Combinable Extensions of Abelian Groups

نویسندگان

  • Enrica Nicolini
  • Christophe Ringeissen
  • Michaël Rusinowitch
چکیده

The design of decision procedures for combinations of theories sharing some arithmetic fragment is a challenging problem in verification. One possible solution is to apply a combination method à la Nelson-Oppen, like the one developed by Ghilardi for unions of non-disjoint theories. We show how to apply this non-disjoint combination method with the theory of abelian groups as shared theory. We consider the completeness and the effectiveness of this nondisjoint combination method. For the completeness, we show that the theory of abelian groups can be embedded into a theory admitting quantifier elimination. For achieving effectiveness, we rely on a superposition calculus modulo abelian groups that is shown complete for theories of practical interest in verification. Key-words: Satisfiability Procedure, Combination, Equational Reasoning, Union of Non-Disjoint Theories, Arithmetic, Abelian Groups ∗ E-mail: [email protected] Extensions combinables des groupes abéliens Résumé : La conception de procédures de décision pour la combinaison de théories partageant un fragment d’arithmétique est un défi dans le domaine de la vérification. Une solution possible consiste à appliquer une méthode de combinaison à la Nelson-Oppen, comme celle développée par Ghilardi pour l’union de théories non-disjointes. On montre comment appliquer cette méthode de combinaison non-disjointe avec la théorie des groupes abéliens comme théorie partagée. On considère la complétude et l’effectivité de cette méthode. Pour la complétude, on montre que la théorie des groupes abéliens peut se plonger dans une théorie admettant l’élimination des quantificateurs. Pour être effectif, on utilise un calcul de superposition modulo la théorie des groupes abéliens qui est montré complet pour des théories intéressantes en pratique dans le domaine de la vérification. Mots-clés : procédure de satisfiabilité, combinaison, raisonnement équationnel, mélange de théories non-disjointes, groupes abéliens Combinable Extensions of Abelian Groups 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On component extensions locally compact abelian groups

Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...

متن کامل

An Explicit Construction of Abelian Extensions via Formal Groups

We introduce method of approaching local class field theory from the perspective of Lubin-Tate formal groups. Our primarily aim is to demonstrate how to construct abelian extensions using these groups.

متن کامل

Abelian Extensions and Solvable Loops

Based on the recent development of commutator theory for loops, we provide both syntactic and semantic characterization of abelian normal subloops. We highlight the analogies between well known central extensions and central nilpotence on one hand, and abelian extensions and congruence solvability on the other hand. In particular, we show that a loop is congruence solvable (that is, an iterated...

متن کامل

Kazhdan Constants of Group Extensions

We give bounds on Kazhdan constants of abelian extensions of (finite) groups. As a corollary, we improved known results of Kazhdan constants for some meta-abelian groups and for the relatively free group in the variety of p-groups of lower p-series of class 2. Furthermore, we calculate Kazhdan constants of the tame automorphism groups of the free nilpotent groups.

متن کامل

On continuous cohomology of locally compact Abelian groups and bilinear maps

Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009